
Install and run Python
Django using cPanel
Django is a Python-based framework that allows you to create websites quickly and easily. Use this
description to set up the Django framework. After setup, you will get a working Django page that
allows you to:

Load static pages with a specific domain name
Loading the Django administration interface
SQLite database usage

CREATE A PYTHON APPLICATION IN THE
CPANEL INTERFACE

1. Log in to your cPanel account
2. Find the Python application setup menu item and click on it
3. Setting up a Python application

1. On the page that appears, click Create Application
1. For Python version, select version 3.8.1.
2. Enter the application directory (Application root /home/cpanel_username/

), for example: application
3. In the Application URL section, select the domain name and leave the

following field blank.
4. Also leave the Application launch file and Application entry point fields

blank.

1. 1. 5. In the field after Passenger log file, you can enter the name of the log file
that can help you troubleshoot.

6. Then click the Create button in the upper right corner. cPanel then creates the
Python application and sets the environment variables.

In this case, cPanel will automatically create the passenger_wsgi.py file and the default
interpreted boot environment.

https://www.djangoproject.com/

7. Copy the command after Enter to the virtual environment. To enter to
virtual environment, run the command: at the top of the page, as you will
need this command to configure the application.

SETTING UP DJANGO
After creating a Python application, the following tasks must be performed from the command line
(You can also use the Terminal menu item in the cPanel interface for this purpose, but you can
also connect to the repository using an SSH client.):

Installing Django
Create and configure the Django project
Configure the Passenger for use with Django

Procedure for the above steps:

1. Log in to your webspacee via SSH or launch the Terminal menu item available from the
cPanel interface.

2. Activate the virtual environment by pasting and running the previously copied command,
for example:

source /home/cpanel_username/virtualenv/application/3.8/bin/activate && cd /home/
cpanel_username/application

3. To install Django, issue the following commands:
cd ~
pip install django==2.1.8

The command line now begins with (application: 3.8), indicating that the application is
working in a virtual environment with Python 3.8. All of the following commands in this
article assume that you are working in a Python virtual environment. If you log out of the
SSH session (or deactivate the virtual environment with the deactivate command), make
sure that you have reactivated the virtual environment before performing any of the
following steps.

To verify the Django installation, issue the following command:

django-admin --version

4. Create the Django project by issuing the following command:
django-admin startproject application ~/application

5. Create static project directories by issuing the following commands:
mkdir -p ~/application/templates/static_pages
mkdir ~/application/static_files
mkdir ~/application/static_media

6. Using a text editor, open the ~/application/application/settings.py file and make the
following changes to the file:

Find the ALLOWED_HOSTS line item and make changes as follows. Replace
example.com with your own domain name:

ALLOWED_HOSTS = ['example.com']

Locate the TEMPLATES block and modify it as follows:
TEMPLATES = [
 {
 'BACKEND': 'django.template.backends.django.DjangoTemplates',
 'DIRS': [os.path.join(BASE_DIR,'templates')],
 'APP_DIRS': True,
 'OPTIONS': {
 'context_processors': [
 'django.template.context_processors.debug',
 'django.template.context_processors.request',
 'django.contrib.auth.context_processors.auth',
 'django.contrib.messages.context_processors.messages',
],
 },
 },
]

Find the line STATIC_URL and add the following lines:
STATIC_URL = '/static/'
STATIC_ROOT = os.path.join(BASE_DIR, 'static_files')

MEDIA_URL = '/media/'
MEDIA_ROOT = os.path.join(BASE_DIR, "static_media")

7. Using a text editor, open the ~/application/application/urls.py file, then delete the
entire contents and paste the following contents:

from django.contrib import admin
from django.urls import path, include
from django.conf import settings
from django.conf.urls.static import static
from django.conf.urls import url
from django.views.generic.base import TemplateView

urlpatterns = [

 path('admin/', admin.site.urls),
 url(r'^$', TemplateView.as_view(template_name='static_pages/index.html'), name='home'),
] + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)

urlpatterns += static(settings.STATIC_URL, document_root=settings.STATIC_ROOT)

8. Using a text editor, open the file ~/application/passenger_wsgi.py then delete the
entire contents and paste the following contents:

import os
import sys

import django.core.handlers.wsgi
from django.core.wsgi import get_wsgi_application

Set up paths and environment variables
sys.path.append(os.getcwd())
os.environ['DJANGO_SETTINGS_MODULE'] = 'alkalmazas.settings'

Set script name for the PATH_INFO fix below
SCRIPT_NAME = os.getcwd()

class PassengerPathInfoFix(object):
 """
 Sets PATH_INFO from REQUEST_URI because Passenger doesn't provide it.
 """
 def __init__(self, app):
 self.app = app

 def __call__(self, environ, start_response):
 from urllib.parse import unquote
 environ['SCRIPT_NAME'] = SCRIPT_NAME
 request_uri = unquote(environ['REQUEST_URI'])
 script_name = unquote(environ.get('SCRIPT_NAME', ''))
 offset = request_uri.startswith(script_name) and len(environ['SCRIPT_NAME']) or 0
 environ['PATH_INFO'] = request_uri[offset:].split('?', 1)[0]
 return self.app(environ, start_response)

Set the application
application = get_wsgi_application()
application = PassengerPathInfoFix(application)

9. Then create the default index.html file within the
~/application/templates/static_pages directory. this file is a default static file that
displays only the text Hello World.

10. Issue the following command:
python ~/application/manage.py migrate

11. Create the administrator user using the following command: To do this, first issue the
following command:

When prompted for the Username, type the new user name and press enter.
When prompted for an email address, type the email address and press enter.
When prompted for the administrator password, type the new password, and then press
enter:

python ~/application/manage.py createsuperuser

12. You can compile static content by issuing the following command:
python ~/application/manage.py collectstatic

13. Restart Python in the cPanel interface.
To do this, find and click Python Setup in the cPanel
On the Web Applications tab, locate the application, and then click Restart
Application in the Actions column.

14. The last step is to test the application via the set URL:
In a browser, open the website (http://www.example.com/) where the index.html file
should appear. It is important to replace the domain name example.com with the
domain name you are using.
The next step is to open the address http://www.example.com/admin/ where the
administration interface of the Django application should appear. It is important to
replace the domain name example.com with the domain name you are using.

MORE INFORMATION
Since the current application is already running, you can actually start developing your own
application, for which you can find further help at the following links:

When prompted to overwrite existing files, type yes and then press enter.

In case the desired content does not appear in the browser, try running the application from
the command line using the following command:

python ~/application/passenger_wsgi.py

In this case, the console will display the cause of the error. If you specified the logging path
when setting up Python, errors are also recorded in the log file.

The official documentation for Django is available at: http://docs.djangoproject.com.
For Django extensions, visit https://github.com/django-extensions/django-extensions.
The south library is a popular add-on to database migrations that you can learn more
about at https://pypi.python.org/pypi/South.
The fabric library helps simplify application development, more detailed information can
be found here http://docs.fabfile.org.

Revision #1
Created 25 October 2023 12:18:25 by Judit Pásztor
Updated 25 October 2023 12:26:01 by Judit Pásztor

https://docs.djangoproject.com/
https://github.com/django-extensions/django-extensions
https://pypi.python.org/pypi/South
http://docs.fabfile.org/

